LINEAR AND CYCLIC NODE ARRANGEMENT OF CARTESIAN PRODUCT OF CERTAIN GRAPHS

Jessie Abraham
Department of Mathematics, Loyola College, Chennai 600034, INDIA
E-mail: jessie.abrt@gmail.com

(Received: May 8, 2018)

Abstract

The linear node arrangement of a graph G on n nodes is the embedding of the nodes of the graph onto the line topology L in such a way that the sum of the distance between adjacent nodes in G is optimized. The cyclic node arrangement is the embedding of the nodes of G onto a cycle C in such a way that the optimization is preserved. In this paper we obtain general results to compute the cyclic and linear node arrangement of a class of Cartesian product graphs with C_{k} and P_{k} respectively, where $C_{k}, k \geq 2$, is a cycle on k nodes and P_{k} is a path on k nodes and their conditional edge faulty graphs.

Keywords and Phrases: Embedding, optimal ordering, edge faulty graph.
2010 Mathematics Subject Classification: 05C78, 05C85.

1. Introduction

Let $G=\left(V_{G}, E_{G}\right)$ be an undirected arbitrary graph with node set $V_{G}=$ $\{1,2, \ldots, n\}$. The linear arrangement of G is a bijective mapping λ from V_{G} to V_{L}. The cost of a linear arrangement λ is given by

$$
L A_{\lambda}(G)=\sum_{(u, v) \in E_{G}}|\lambda(u)-\lambda(v)|
$$

The linear node arrangement problem is to nd a λ such that $L A_{\lambda}(G)$ is minimized. The minimum thus obtained is called linear node arrangement of G and is denoted by $L A(G)$ [1]. The cyclic arrangement of G is a bijective mapping λ from V_{G} to V_{C}. The cost of a cyclic arrangement λ is given by

$$
C A_{\lambda}(G)=\sum_{(u, v) \in E_{G}}|\lambda(u)-\lambda(v)| .
$$

